Prevenire
Prevenire

XAI identifies salient variables interplay

Partner: Politecnico di Milano, ETH Zurigo
consiglio nazionale delle ricerche
Università e Centri di ricerca
DESCRIZIONE DEL PROGETTO

eXplainable Machine Learning does complement usual math modeling in identifying salient variables and their possible nonlinear dynamic interactions from data, as also described in:

Muselli and Liberati, IEEE Trans KDE 2002

Ferrari Trecate, Musellli, Liberati and Morari, Automatica 2003

Garatti, Bittanti, Liberati and Maffezzoli, Intelligent Data Analyis, 2007

Grassi, Liberati et al., Frontiers in Oncology, 2019

OBIETTIVI DELLA SOLUZIONE

identifying salient variables and their possible nonlinear dynamic interactions from data is paramaount both in medical diagnosis and in organizational needs

 

DOWNLOAD DOCUMENTI
PER SAPERNE DI PIÙ

https://doi.org/10.3389/fonc.2019.00532